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Abstract A vigor-structured model for mountain pine beetle outbreak dynamics within
a forest stand is proposed and analyzed. This model explicitly tracks the changing vigor
structure in the stand. All model parameters, other than beetle vigor preference, were
determined by fitting model components to empirical data. An abrupt threshold for tree
mortality to beetle densities allows for model simplification. Based on initial beetle den-
sity, model outcomes vary from decimation of the entire stand in a single year, to inability
of the beetles to infect any trees. An intermediate outcome involves an initial infesta-
tion which subsequently dies out before the entire stand is killed. A model extension is
proposed for dynamics of beetle aggregation. This involves a stochastic formulation.

Keywords Mountain pine beetle · Structured population model · Integrodifference
equation

1. Introduction

Mountain pine beetles (Dendroctonus ponderosae Hopkins) are the single most destruc-
tive pine forest pest (Logan and Powell, 2001; Logan et al., 2003). Although mountain
pine beetles occur naturally throughout the pine forests of western North America, their
range is spreading quickly, likely due to changing climate (Logan et al., 2003).

1.1. Biological background

Mountain pine beetle outbreaks range from isolated attacks on single trees to ‘mass at-
tacks’ of virtually all trees in a stand. Mass attacks can decimate forests stands in 1 or
2 years. While the exact determinants of successful outbreaks are unclear, initial beetle
attack density and host vigor (as measured by wood production per unit of leaf area) are
key factors (Fig. 1). When vigor is low or beetle density high, attacks are successful (tree
is killed). When vigor is high or beetle density low, attacks are only partially successful
(strip attack) or unsuccessful (tree repels attack).
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Fig. 1 Empirical thresholds for attack success as a function of host vigor. Each symbol is an individual
tree. Solid circles indicate trees were killed by beetles; open circles indicate trees resisted attack and are
alive; grey circles indicate trees had a strip attack. The grey lines are empirically estimated thresholds
for host mortality. (a) Data for mountain pine beetles attacking lodgepole pine redrawn from Waring and
Pitman (1985). The threshold is based the maximum likelihood fit of Eq. (2) with β(ν) = β0 exp(β1ν)

(see Appendix B for details). (b) Data for spruce bark beetles attacking Norway spruce from Mulock and
Christiansen (1986). The axes presented here are converted from the original axes to be comparable with
panel (a) (see Appendix A for details). The threshold is redrawn from the original work.

The mountain pine beetle life cycle has been researched intensively, and is well under-
stood. The beetles attack and breed in live host trees—a process that results in host mor-
tality. Most mountain pine beetle populations complete one generation a year (Safranyik
and Carroll, 2006) (Fig. 2). Recently developed adults emerge from their host trees in late
summer, and take flight in search of new hosts.

The flight period for the entire population is brief, only about 2 weeks long. Dis-
persal of flying beetles through the forest is guided by two kinds of chemical signals:
kairomones, produced by trees, and pheromones, produced by beetles already in the
process of attacking new hosts. (See Logan et al., 1998; White and Powell, 1998 for
models of these dynamics.)

Given that attack success depends crucially upon tree vigor (Fig. 1), and that beetles
can sense tree vigor through kairomones, it is natural to ask whether beetles preferentially
attack less vigorous trees over more vigorous. There is some evidence of this so-called
primary attraction in mountain pine beetle attacks (Moeck and Simmons, 1991), although
is important to note that this is only part of the chemical ecology of mass attack.

Once beetles settle on a potential host, they attempt to bore through the outer bark into
the phloem tissue. Healthy trees can resist attacks by producing resin to slow down or
stop beetles from constructing tunnels (galleries) to lay eggs. If sufficient beetles attack
a particular host, then resin defenses can be overwhelmed, and beetles successfully con-
struct egg galleries in the phloem tissue. The density of beetles required to overcome tree
defenses can be measured empirically (Fig. 1). When the attack is successful, the eggs
develop into larvae, which create feeding galleries that girdle and often kill the host tree.
Beetle populations often over-winter as late instar larvae, and resume development in the
spring. Pupation occurs in early spring and adults emerge in late summer.
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Fig. 2 Life-cycle of the mountain pine beetle. New adults emerge from last season’s hosts in late summer,
and attack new hosts over a 2–3 week period. If the hosts are killed, then the attacking beetles lay eggs
that develop through larval stages over the fall, winter and spring. The major phases of the life-cycle are
shown in proportion to their duration over a season. The gray loop indicates 1 year in the model, and the
arrow represents the transition point.

1.2. Models for beetle dynamics

Models for mountain pine beetle population dynamics differ in their level of ecologi-
cal detail—ranging from strategic models that phenomenalize the ecological interactions
into a single replacement function for the population (Berryman et al., 1984), to com-
plex spatial models that explicitly describe the processes of dispersal, aggregation and
attack (Powell et al., 1996). While more complex models are arguably more realistic, it is
often difficult to study them and disentangle the contribution of ecological features (White
and Powell, 1997). Strategic models, on the other hand, are well suited to study the general
dynamics of a system, but often at the expense of realism.

Here, we develop and analyze a strategic population model of the mountain pine beetle
to study how host selection and mass attack influence the dynamics of beetle outbreaks.
Our work is based on the models of Berryman (1979), Berryman et al. (1984), but provides
greater realism by explicitly incorporating how the attack process depends on host vigor.

Early strategic models of mountain pine beetle populations were based on produc-
tivity curves for the processes of attack and reproduction at the spatial scale of a forest
stand (Berryman, 1979). Productivity curves describe the density of beetles emerging
from a stand in a current year, based on the density of attacking beetles in the previous
year. While used to depict dynamics at the scale of a forest stand, they are based on ob-
servations of per-capita beetle fecundity on individual trees. For aggressive bark beetles,
beetle fecundity curves are unimodal, reflecting the balance between overwhelming host
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defenses and reducing reproduction due to overcompensatory competition. For example,
if the number of beetles attacking a host is too low, then attacks fail because of host de-
fenses (Fig. 1), but if the number of attacks are too high, then reproduction is reduced
because of intraspecific competition. The density of attacking beetles giving rise to the
maximum per capita fecundity is the minimum density required to kill the host (Raffa and
Berryman, 1983), which implies that hosts with different levels of vigor have different
fecundity curves. Thus, the productivity curve for the entire stand, which is the sum of the
fecundity curves over all trees, depends on the distribution of vigor in the stand.

Because productivity curve models describe the density of beetles emerging from a
stand in a current year based on the density of attacking beetles in the previous year, they
offer a straightforward way to predict beetle dynamics. However, they implicitly assume
the vigor structure of a stand remains constant through time (Berryman, 1979). Such an
assumption is unrealistic for mountain pine beetles because outbreak dynamics alter the
forest at a much faster rate than the forest regenerates. A changing vigor structure in a
forest implies a dynamic productivity curve. In this paper, we analyze the changing vigor
in the forest stand, developing a population model structured by host vigor. We extend the
model to include beetle aggregation on the tree hosts.

1.3. A structured-population model for mass attack

As demonstrated in Fig. 1, host tree vigor plays a central role in the success or failure of
beetle mass attack. Indeed, the beetle density threshold for successful mass attack depends
explicitly upon host tree vigor. However, at the level of a forest stand, beetles are likely
to encounter variable host tree vigor, as it varies from tree-to-tree. Because the time scale
for beetle attack is much faster than the forest regeneration time scale, beetle attack can
modify the year-to-year vigor structure in a stand as the attack progresses. If low vigor
trees in a stand are attacked early, then the remaining trees may be better able to withstand
subsequent attack. In this way, changes in the vigor structure of a stand will affect the
year-to-year dynamics of attacking beetle success.

To date, mathematical models for pine beetle attack have generally excluded the vigor
structure of the host tree population (but see Raffa and Berryman, 1986 and Powell et al.,
1996). However, structured-population models have an established history of revealing
key details of processes governing population dynamics (Caswell et al., 1997). A particu-
larly useful outcome of structured-population models is a simplified projection of overall
population levels from one year to the next Gurney and Nisbet (1998).

It is the purpose of this paper to investigate the interplay between attack success and
primary attraction of beetles to trees, when both of these are affected by the host tree
vigor. Specifically, we will investigate conditions on beetle density and tree host vigor
required for a successful mass attack. We will use a vigor- and bark area-structured model
for attack. The model component will be based on a mixture of an empirical evidence
for the attack success, and theoretically-derived relationships for the primary attraction
to host trees. As explained in the next section, we will refer to this structured-population
model as a “structured-threshold model,” as it couples curves of the sort shown in Fig. 1
to beetle production in the subsequent generation.

The model output will include a simplified projection of total beetle population levels
from one year to the next as the beetles modify the forest stand structure, destroying
trees that remain susceptible to attack at that year’s beetle density. We will analyze the
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Table 1 Symbols and variables used the mountain pine beetle production model and its simplification

Variable Definition and (units)

t Time index in years (yr)
a Bark area of a tree (m2)
ν Vigor index of a tree (g m−2 yr−1)
ft (a, ν) Distribution of trees, with respect to bark area and vigor of tree

(number per unit area per unit vigor, yr g−1)
Ft (a, ν) Distribution of bark area from all trees with respect to bark area

and vigor of tree (per unit vigor, g−1 m2 yr)
χ(bt , ν) Proportion of hosts killed for a given level of host vigor and

attacking beetle density (dimensionless)
bt (a, ν) Density of attacking beetles (number per unit bark area, m−2)
p(bt , ν) Number emerging beetles per attack (dimensionless)
et (a, ν) Number of emerging beetles from a host tree (dimensionless)
Pt (bt , a, ν) Total number of emerging beetles in the stand (dimensionless)
k(a, ν) Preference kernel for trees of given area and vigor

(per unit vigor per unit area, yr g−1)
k̃(ν) Preference kernel for trees of given vigor (per unit vigor, g−1 m2 yr)
φ(ν) Bark area per unit vigor (area per unit vigor, g−1 m4 yr)

qualitative dynamics of the simplified projection model, showing how threshold behavior
and bistable dynamics in the beetle population levels arise naturally from the underlying
structured-population model.

2. Structured-threshold model

We develop a general model for host tree and beetle density, structured according to host
tree vigor and host tree bark area. We then simplify the model under the assumption that
beetles distribute themselves only according to host vigor and not according to host tree
bark area. The model variables, their definitions and their units are given in Table 1.

2.1. Model development

In our model, we refer to a host as a single tree, and a stand is a group of trees. From
the perspective of the mountain pine beetle, host vigor is described by a single index ν

that characterizes the capacity for resinous defenses. As shown in Fig. 1, an appropriate
measure is wood produced per unit leaf area in the host tree. To remain consistent with the
empirical evidence, density here refers to the number of beetles per unit area of bark a.

The density of attacking beetles on a particular host i is represented by b(ai, νi), which
may vary with both the vigor and size (bark area) of a tree. The number of emerging
beetles per attack from host i is given by the function p(b(ai, νi), νi), which depends on
both attack density and host vigor. This function includes the probability of host mortality,
as well as the effects of intraspecific competition. In the early literature, it is referred to
as the “productivity curve.” Empirical evidence suggests that the productivity curve is a
threshold function over b(ai, νi) at any particular value of ν. For example, we could use

p
(
b(a, ν), ν

) = χ
(
b(a, ν), ν

)
Ae−γ b(a,ν) (1)
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Fig. 3 The function χ(b(v), v), which is the proportion of trees killed in vigor class v by attacking beetle
density b(v). The dimensionless form (1)–(2) with the exponential function (β(v) = exp(β1v)) is shown
here for α = 10 and β1 = 1.5.

where

χ
(
b(a, ν), ν

) = (
1 + e−α(b(a,ν)−β(ν))

)−1
. (2)

The function χ(b(a, ν), ν) represents the proportion of hosts killed for a given level of
host vigor and attacking beetle density, and β(ν) defines the line where χ(b(a, ν), ν) =
0.5 (Fig. 3). The maximum likelihood fit of β(ν) = β0 exp(β1(ν)) to attack data is shown
in Fig. 1. This curve gives a slightly better fit than the original linear function of Waring
and Pitman (1985).

The parameter α and the function β(ν) describe the expected probability of host mor-
tality χ . Empirical evidence suggests that the transition from low to high probability of
mortality is rapid, and that the function β(ν) is a monotonically increasing function of
host vigor (Fig. 1).

The parameters γ and A reflect the effects of intraspecific competition in the beetles.
Researchers have found that the influence of competition begins at attack densities greater
than the attack threshold, and that the strength of competition is independent of host vigor
(e.g., Raffa and Berryman, 1983). This suggests that the processes of host defense and
intraspecific competition can be modeled independently as shown in (1) (Berryman et
al., 1984). Equation (1) gives a non-monotonic growth function, with the possibility of
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Table 2 Parameters used in the mountain pine beetle model. Details of calculation of the parameters are
given in Appendix B

Parameter Estimate (dimensionless) Source

α threshold steepness 0.21 m2 (4.69) Waring and Pitman (1985)
A beetle growth 32.9 (32.9) Raffa and Berryman (1983)
S dispersal survival Variable –
β0 attack threshold 22.34 m−2 (1) Waring and Pitman (1985)
β1 nonlinear threshold 0.0178 g−1 m2 yr1(2.1) Waring and Pitman (1985)
γ density dependence 0.0166 m−2 (0.371) Raffa and Berryman (1983)
νm maximum vigor 116.4 g m−2 yr−1 (1) Waring and Pitman (1985)
AT average bark area 12.6 m2 (–) He (2006)

overcompensation in the beetle dynamics. In this paper, we will estimate γ and A from
the data in Raffa and Berryman (1983) (Table 2, Appendix B).

The total number of beetles that emerge from a given host tree with area a and vigor ν

is

e(a, ν) = p
(
b(a, νi), ν

)

︸ ︷︷ ︸
beetles per attack

· a︸︷︷︸
bark area

· b(a, ν)︸ ︷︷ ︸
attackers per unit area bark

. (3)

We define the distribution of host structure as f (a, ν), The total number of trees in the
stand is

N =
∫ ∞

0

∫ ∞

0
f (a, ν) da dν (4)

and f (a, ν)/N is a probability density function for the joint distribution of tree area and
vigor.

The total number of emerging beetles over the entire stand in any given year t is e(a, ν)

weighted by f (a, ν)

Pt =
∫ ∞

0

∫ ∞

0
ft (a, ν)
︸ ︷︷ ︸

host type distribution

·a p(bt (a, ν), ν) bt (a, ν)
︸ ︷︷ ︸

number emerging from host

da dν

=
∫ ∞

0

∫ ∞

0
Ft(a, ν)︸ ︷︷ ︸

bark area density

·p(bt (a, ν), ν) bt (a, ν)
︸ ︷︷ ︸

density emerging from host

da dν (5)

where Ft(a, ν) = aft (a, ν) is the distribution of total bark area with respect to the bark
area of a tree and vigor of a tree.

If we assume that the forest dynamics of growth, competition, and non-beetle caused
mortality are very slow relative to the change caused by beetle attacks, then the distribu-
tion of potential hosts is given by

ft+1(a, ν) = ft (a, ν)
(
1 − χ

(
bt (a, ν), ν

))
. (6)

In effect, we are modeling an epidemic moving through an otherwise static forest. Multi-
plying Eq. (6) by bark area a yields

Ft+1(a, ν) = Ft(a, ν)
(
1 − χ

(
bt (a, ν), ν

))
. (7)
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Attack densities and distribution of host structure will change from year to year. The
balance equation for attack densities is the number of emerging beetles redistributed over
the new hosts in the stand.

bt+1(a, ν) = Kt+1(a, ν)Pt

= Kt+1(a, ν)

∫ ∞

0

∫ ∞

0
Ft(a, ν)p

(
bt (a, ν), ν

)
bt (a, ν) da dν (8)

where Kt+1(a, ν) is a function that redistributes the attacking beetles onto the available
bark area that is left after infestation. The hosts will have already suffered damage from
the beetle infestation at time t , and so the available bark area is Ft+1(a, ν).

It is assumed that proportion S of the beetles survive the redistribution process. Hence,
the function Kt+1(a, ν) must conserve the number of attacking beetles so that the density
of attacking beetles, weighted by the total available bark area equals the total number of
emerging beetles

∫ ∞

0

∫ ∞

0
bt+1(a, ν)Ft+1(a, ν) da dν = SPt . (9)

Multiplying both sides of (8) by Ft+1(a, ν), integrating, and applying Eq. (9) yields

∫ ∞

0

∫ ∞

0
Kt+1(a, ν)Ft+1(a, ν) da dν = S. (10)

If the beetles have no preference regarding tree bark area or vigor then the choice

Kt+1(a, ν) = S
∫ ∞

0

∫ ∞
0 Ft+1(a, ν) da dν

(11)

will distribute the beetles evenly with respect to these factors. In this case Kt+1 is a con-
stant in Eq. (8), and hence the density of beetles per unit area bark bt+1 is a constant. Note
that the actual distribution of beetles, given by bt+1Ft+1(a, ν), is nonconstant, and is equal
to zero for those bark area and vigor values where there are no trees (ft+1(a, ν) = 0).

Alternatively, we can define a preference function k(a, ν), with preference function
values larger than one indicating more preferred tree bark area and vigor, and preference
function values less than one indicating less preferred tree bark area and vigor. The mod-
ification of Eq. (11) that includes the preference function is

Kt+1(a, ν) = Sk(a, ν)
∫ ∞

0

∫ ∞
0 k(a, ν)Ft+1(a, ν) da dν

. (12)

Here, the preference function k(a, ν) appears both in the numerator and under the integral
sign in the normalization constant in the denominator. Equations (8) and (12) become

bt+1(a, ν) = k(a, ν)

∫ ∞
0

∫ ∞
0 Ft(a, ν)χ(bt (a, ν), ν) bt (a, ν)SAe−γ b(a,ν) da dν

∫ ∞
0

∫ ∞
0 k(a, ν)Ft (a, ν)(1 − χ(bt (a, ν), ν)) da dν

.

(13)



A Structured Threshold Model for Mountain Pine Beetle Outbreak

The model system of equations, (1)–(2), (7) and (13), is a nonlinear integrodifference sys-
tem. The unknown functions to be solved for are the density of attacking beetles bt (a, ν)

and the distribution of total bark area not yet destroyed by infestation Ft(a, ν).
In reality, we expect that beetle aggregation as well as tree preference will play a role

in the distribution of beetles. We defer incorporation of this beetle aggregation to Sect. 4.

2.2. Model simplification

Although beetles can respond to size cues for trees (Cole and McGregor, 1983), we focus
on the minimal conditions under which outbreak can occur and assume that attacking
beetles distribute themselves only according to host vigor, independently of tree size,
and are able to attack the lower vigor trees preferentially. Although this undoubtedly an
oversimplification of dynamics of tree preference by beetles, it can be considered a “best-
case” establishment scenario, where by choosing low-vigor trees, beetles can establish
most easily. Then the above system can be simplified. Define φ(ν) as the distribution of
bark area of live hosts as a function of host vigor, so

φt (ν) =
∫ ∞

0
Ft(a, ν) da. (14)

The total bark area of live hosts per hectare in the stand is given by

Mt =
∫ ∞

0
φt (ν) dν. (15)

If we assume that emerging beetles only redistribute themselves by host vigor, then the
redistribution function Kt+1 depends only upon host vigor ν. Substitution into Eq. (13)
shows that bt+1 depends only upon host vigor ν. Therefore, Eq. (13) becomes

bt+1(ν) = k̃(ν)
(
∫ ∞

0 φt (ν)χ(bt (ν), ν)bt (ν)Ae−γ bt (ν) dν)
∫ ∞

0 k̃(ν)φt (ν)(1 − χ(bt (ν), ν)) dν
. (16)

Integration of (7) yields

φt+1(ν) = φt (ν)
(
1 − χ

(
bt (ν), ν

))
. (17)

We assume that the maximum vigor level possible is νm, and that the average level of
bark area initially available is φ̄0. The threshold location function β(ν) is assumed to have
the form β(ν) = β0 exp(β1ν). While it would be possible to use the original Waring and
Pitman (1985) straight-line function β(ν) = β0 +β1ν, this function does not fit the data as
well (Fig. 1), and is no simpler in the subsequent analysis. The initial number of beetles
is given by

N0 =
∫ vm

0
φ0(ν)b0(ν) dν. (18)
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2.3. Nondimensionalization

To facilitate analysis, we rescale the variables to be dimensionless

ν∗ = ν

νm

, b∗ = b

β0
, φ∗ = φ

φ̄0
. (19)

Corresponding dimensionless parameters are given by

γ ∗ = γβ0, α∗ = αβ0, β∗
1 = β1νm, N∗

0 = N0

νmβ0φ̄0
, A∗ = SA

(20)

and functions by

k̃∗(ν∗) = νmk̃(ν∗νm), χ∗(b∗(ν∗), ν∗) = (
1 + e−α∗(b∗−(exp(β∗

1 ν∗)))
)−1

. (21)

Dropping asterisks for notational simplicity, we rewrite Eq. (16) in its dimensionless form

bt+1(ν) = k̃(ν)
(
∫ 1

0 φt (ν)χ(bt (ν), ν)bt (ν)Ae−γ bt (ν) dν)
∫ 1

0 k̃(ν)φt (ν)(1 − χ(bt (ν), ν)) dν
, (22)

with 0 < ν < 1 and the average initial bark density equal to one φ̄0 = 1. Equation (17)
remains unchanged.

3. A population projection model

One mathematical approach for simplifying a structured-population model to a simplified,
nonstructured population model is to use a method of population projection (Powell et
al., 1996) This entails assuming a particular form structured variable (in this case tree
host vigor) which then allows for simplification. In our case, we restrict ourselves to the
case where the distribution of vigor of the trees is initially uniform (i.e., each possible
vigor level 0 < ν < 1 is equally likely, so that φ0 = 1). By way of example, we consider
the case of an exponential preference function, with attraction to the lower vigor trees
k̃(ν) = c exp(−cν).

3.1. A recurrence relation for beetle density at low host vigor

In this section, we derive a recurrence relation for beetle density at low host vigor b̃t . We
assume that the beetles are initially distributed according to the preference function k̃(ν)

so that

b0(ν) = b̃0 exp(−cν), (23)

where

b̃0 = N0
c

1 − exp(−c)
(24)
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Fig. 4 Host preference and attack success threshold. The attack success threshold β(ν) (solid line indi-
cating location of rapid transition in Fig. 3) increases with increasing host vigor, reflecting that hosts with
higher vigor require more beetles to be successfully attacked. Host preference (dashed line) decreases with
host vigor, reflecting the behavioral preference that beetles show for low vigor trees. The vigor level (νt )
where these two curves intersect (dotted line) is the maximum vigor level where attacking beetles in year
t will successfully overwhelm host defenses. Beetles that attack hosts with vigor levels greater than νt are
killed without reproducing. The dark solid curve shows the exponential attack threshold β(v) = exp(β1v)

with β1 = 1.5. The light solid curves show the linear attack threshold β(v) = 1 + βν, with ν > 0 and
ν = 0. The dashed curve shows the host preference with c = 2, and N = 1.

is chosen to ensure that
∫ 1

0 b0(ν) dν = N0. Here, b̃0 can be interpreted as the beetle density
for low host vigor. To simplify the analysis, we consider the case where α → ∞ so that
χ → H(b(ν) − exp(β1ν)) where H is the Heaviside step function. In other words, for a
given vigor level ν, the beetles are unsuccessful (χ(b(ν), ν) = 0) if the beetle density is
subthreshold (b(ν) < exp(β1ν)), and are successful (χ(b(ν), ν) = 1) if the beetle density
is superthreshold (b(ν) > exp(β1ν)). Beetle success results in reproduction, and also in
the killing of the host.

Under these assumptions, the condition for the beetle population to initially reproduce
is b0(ν) − exp(β1ν) > 0 for some value or ν. The value of ν which gives the largest left-
hand side is ν → 0, and hence the condition for initial beetle reproduction is b̃0 > 1. This
is satisfied if either enough beetles are introduced (N0 sufficiently large), or the preference
for low vigor trees is pronounced (c sufficiently large).

If initial number of beetles introduced N0 is very large, then the beetle population
may successfully reproduce for all vigor levels. This occurs when b(ν) − exp(β1ν) > 0
for all ν. The value of ν that gives the smallest left-hand side is ν = 1. Hence, the condition
for successful reproduction for all vigor levels becomes b0(1) > exp(β1), or equivalently,
b̃0 > (exp(β1)) exp(c). When this condition is satisfied, the entire stand is infested with
beetles and destroyed in a single time step.

At intermediate values of N0 the low vigor trees will host beetles, and the high vigor
trees will not (Fig. 4). In this case, there is threshold tree vigor level ν0, below which the
beetle reproduces (and also kills the trees), and above which the beetle does not reproduce,
and the trees are left unscathed. The threshold vigor value ν0 is calculated as the value of ν

satisfying b0(ν) = exp(β1ν). Using Eq. (23), this is rewritten as b̃0 exp(−cν) = exp(β1ν).
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This can be solved explicitly

ν0 = 1

c + β1
log(b̃0). (25)

Mathematically, the threshold function χ = 1 for 0 < ν < ν0 and χ = 0 for ν0 < ν < 1.
Using this idea, we can rewrite (22) for t = 0 as

b1(ν) = b̃1 exp(−cν), (26)

where

b̃1 =
∫ ν0

0 b̃0c exp(−cν)Ae−γ b̃0 exp(−cν) dν
∫ 1

ν0
c exp(−cν) dν

. (27)

Integrating (26) with respect to 0 < ν < 1 yields the number of beetles in the stand after
one time step as N1 = b̃1(1 − exp(−c))/c.

If we assume that the beetle population has grown and spread through increasing vigor
classes over successive generations, then φt+1(ν) is zero for 0 < ν < νt+1 and is one for
νt+1 < ν < 1. Here, νt+1 satisfies b̃t+1 exp(−cν) = exp(β1ν), and hence

νt+1 = 1

c + β1
log(b̃t+1), (28)

where

bt+1(ν) = b̃t+1 exp(−cν), (29)

and

b̃t+1 =
∫ νt

νt−1
b̃t c exp(−cν)Ae−γ b̃t exp(−cν) dν

∫ 1
νt

c exp(−cν) dν
. (30)

This expression yields a positive b̃t+1 providing νt > νt−1. Thus, Eqs. (28) and (30) are
valid so long as νt is an increasing sequence with values below 1. This generates a cor-
responding, increasing sequence of b̃t values. When νt ≤ νt−1, the population dies. When
νt ≥ 1 the entire stand has been invaded.

Equation (30) also satisfies Eq. (27) for the case t = 0. If the substitution b̃−1 = 1
is made, then Eq. (28) yields ν−1 = (c + β1)

−1 log(b̃−1) = 0, indicating that prior to the
infestation outbreak there are no infected trees. As above, b̃t can be translated into the
total number of beetles in the stand Nt by integrating (29) from νt to 1 to yield

Nt = b̃t (b̃
−c/(c+β1)
t − e−c)

c
. (31)

Perhaps surprisingly, Eq. (30) can be integrated exactly. However, the cases with and
without density-dependence (γ greater than zero and equal to zero) must be treated sep-
arately. In the next section, we analyze the density-independent case (γ = 0). In the fol-
lowing section, we analyze the density-dependent case (γ > 0).
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3.2. Linear growth model

When γ = 0, integration of Eq. (30) yields

b̃t+1 = A
b̃t (exp(−cνt−1) − exp(−cνt ))

exp(−cνt ) − exp(−c)
. (32)

Equation (28) allows us to rewrite the right-hand side in terms of b̃t and b̃t−1

b̃t+1 = A
b̃t (b̃

β1+c
c

t − b̃
β1+c

c

t−1 )

b̃
β1+c

c

t−1 (1 − b̃
β1+c

c
t exp(−c))

. (33)

Equation (33) is a discrete-time dynamical system that describes the progression of
disease through a stand structured according to vigor. Starting with the initial condition
b̃−1 = 1 and b̃0 given by Eq. (24), we can evaluate b̃t+1 for successive time steps, calculate
the corresponding spread through the vigor classes from Eq. (28) and the corresponding
total beetle numbers from (31).

What are the possible outcomes of such a calculation? If the beetle population is re-
producing, it must be above threshold (χ(b(ν), ν) = 1) in a region where bark density
φ(ν) is nonzero. Because the beetle destroys all available trees at all vigor levels where
it is above threshold, and this is not replaced, a reproducing population has b̃t+1 > b̃t . In
other words, in each time a reproducing beetle population invades and destroys higher
vigor classes. Hence, if the sequence of b̃t values from Eq. (33) starts to decline, then
the beetle population has gone extinct. This can happen, even when the growth rate A is
much larger than unity, because the beetle is destroying its resource, the forest bark, as
time progresses.

This excludes the possibility of an endemic population. However, an endemic popula-
tion may be possible in a more complex model where trees change vigor classes as they
mature. This is a subject for further research.

If the beetle population does not die out before the entire stand is consumed, the alter-
native is that the b̃t values grows monotonically past the critical value b̃t = exp(c + β1).
At this point, the entire structured stand (as described by all vigor classes of size less than
or equal to the maximum value, one) is destroyed.

3.3. Nonlinear growth model

Integration of (30) for the case γ > 0 yields

b̃t+1 = A

γ

e−γ b̃t exp(−cνt ) − e−γ b̃t exp(−cνt−1)

exp(−cνt ) − exp(−c)
. (34)

Note that, even though this is undefined for the linear model (γ = 0), it converges to the
solution of the linear model (32) as γ → 0. This calculation can be facilitated by Taylor
expansion of the exponential terms in the numerator to leading order in γ . Equation (28)
allows us to rewrite the right-hand side in terms of b̃t and b̃t−1

b̃t+1 = Ab̃
β1+c

c
t

γ

exp(−γ b̃t b̃
− β1+c

c
t ) − exp(−γ b̃t b̃

− β1+c
c

t−1 )

1 − b̃
β1+c

c
t exp(−c)

. (35)
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Fig. 5 Forest damage as a function of initial beetle density and host preference predicted by the structured
threshold model. The cumulative proportion of trees killed at the end of an infestation is shown by the
gray-scale, where white represents zero host mortality and black represents the mortality of all trees in the
stand (color bar). The dashed black line depicts the minimum beetle density required to successfully kill the
weakest hosts, and the dashed white line depicts the density above which all hosts are killed in the first year
of the infestation. The solid white line in panel (a) shows the initial beetle numbers guaranteed to eventually
kill the entire stand, calculated from Eq. (40). Axes values that are above and to the right of the solid line
give rise to populations that grow in the second year. (a) Dynamics with a constant attack threshold (A = 2,
γ = 0.8, and β = 0). (b) Dynamics using empirically derived parameters (A = 33, γ = 0.37, and β = 2.1).
Initial beetle abundance can be translated back to dimensional units using Eq. (20).

As before, we have a discrete-time dynamical system with initial condition b̃−1 = 1 and
b̃0 given by Eq. (24), whose solution b̃t+1, calculated for successive time steps, yields the
extent of the spread through vigor classes from Eq. (28) and the corresponding total beetle
numbers from (31).
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3.3.1. A lower bound for mass attack shows threshold effects
To demonstrate a threshold effect, we consider a simplified system where the attack suc-
cess threshold is constant (β1 = 0; see Fig. 4). We can rewrite Eqs. (33) and (35) in terms
of the ratio rt = b̃t /b̃t−1 to give

rt+1 = A
rt − 1

1 − b̃t exp(−c)
= f (rt , b̃t ) (36)

and

rt+1 = A

γ

exp(−γ ) − exp(−γ rt )

1 − b̃t exp(−c)
= g(rt , b̃t ). (37)

The initial conditions to these equations are given by r0 = b̃0/b̃−1 = b̃0 > 1 (Eq. (24)).
We consider an approximations to the dynamical Eqs. (36) and (37) which provides a

lower bound rt for rt . The approximation is

rt+1 = f (rt , rt ) = A
rt − 1

1 − rt exp(−c)
(38)

for Eq. (36) and

rt+1 = g(rt , rt ) = A

γ

exp(−γ ) − exp(−γ rt )

1 − rt exp(−c)
(39)

for Eq. (37). To show that rt is a lower bound for rt observe that f and g are increasing
functions of their second argument b̃t . In turn, b̃t = rt rt−1 · · · r1r0 is bounded below by rt

because the increasing sequence b̃s implies rs = b̃s/b̃s−1 > 1 for 0 < s < t − 1.
The equations can be analyzed graphically using cobwebbing (Fig. 7). For each sys-

tem, there is a unique positive unstable steady state r∗ which is larger than one. For
Eq. (38), the steady state is r∗ = (

√
(A − 1)2 + 4 exp(−c) − (A − 1)/(2 exp(−c)). For

Eq. (39), the steady state must be found numerically. Providing r0 > r∗, the cobwebbing
shows rt > r∗ for all t . This also holds true for b̃0: if b̃0 exceeds r∗ it also will remain
larger than r∗ for all t . This is because b̃0 = r0 and rt is a lower bound for rt . The im-
plication is that when b̃0 exceeds r∗ the beetle will eventually destroy the entire stand.
Employing (24) to translate this to a constraint on N0 yields a critical number beetles
required to eventually destroy the entire stand as

N0c = r∗ 1 − exp(−c)

c
. (40)

This is an upper bound for the number of beetles required to destroy the entire stand. As
can be seen in Fig. 5(a), fewer beetles may also suffice to destroy the entire stand.

When r0 lies between 1 and r∗, the ratio rt declines to an rt value below one. The
threshold for declining rt lies below r∗ because rt is a lower bound for rt . This threshold
is calculated numerically in Fig. 5(a) for the linear model.
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Fig. 6 Forest damage as a function of initial beetle density and host preference predicted by the structured
threshold model. See Fig. 5 for legend details. (a) Dynamics with increased intraspecific competition
(A = 33, γ = 0.8, and β = 2.1). (b) Dynamics with decreased maximum fecundity (A = 10, γ = 0.37,
and β = 2.1).

4. A stochastic model with beetle aggregation

In this section, we modify the simplified beetle density model (22) to account for nonuni-
form density of beetles due to aggregation. Here, we simply propose the model, leaving
its analysis and application to beetle outbreaks for future work.

The simplified beetle density model (22) assumes that, for a given vigor level ν, the
density of beetles (number per unit area of bark) at time t is given precisely by bt (ν).
Whether a local outbreak is successful depends on whether bt (ν) exceeds the outbreak
threshold (Fig. 1), yielding a value of χ near one. In reality, the density of beetles in a
given unit of tree bark will vary, depending on whether the unit of tree bark contains a
local aggregation of beetles. Even when average beetle levels are low, outbreaks of beetles
can succeed locally if aggregations of beetles drive the local level of χ close to one.
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Fig. 7 Cobwebbing the nonlinear threshold model (39). rt denotes the ratio of beetle densities from one
time step to the next. The initial value is r0 = b̃0 = N0(1 − exp(−c))/c where N0 is the total number of
beetles and c is vigor preference parameter. If rt drops below one, the population dies out.

One approach to modeling insect aggregation is to simulate its spatial structure explic-
itly using partial differential equations or related models (Powell et al., 2000). Another
approach describes variation in the insect densities using the ideas of random variables:
noninteracting insects are Poisson distributed on their hosts, while aggregating insects are
overdispersed (variance exceeds the mean). This second approach has been widely used in
the context of host-parasitoid dynamics (Hassell, 1978) where the host is an insect larvae,
and the aggregating insect is the parasitoid fly or wasp. We follow this second approach
for modeling mountain pine beetle aggregation. In our case, the host is in a given unit area
of tree bark, and the aggregating insect is the pine beetle.

We describe density of beetles on bark with vigor ν as a random variable Bt(ν) with
expected value bt (ν). Recall that the nondimensionalization (19) calculates the units for
bt (ν) as density relative to the low-vigor threshold density β0. In other words, a value
of Bt(ν) exceeding one is sufficient to kill a tree, providing ν is very small. The random
variable Bt(ν) can be translated into the number of beetles on a tree host of area AT . This
is through multiplication by the dimensionless scaling factor β0AT to give Bt(ν)β0AT .
If beetles act independently of one another, the number of beetles on a tree of area AT

should be Poisson distributed, with mean bt (ν)β0AT , and a corresponding variance also
equal to bt (ν)β0AT . However, beetle aggregation will cause the beetles to overdisperse so
that the variance exceeds the mean. This additional variation in beetle levels will translate
into increased variation in outbreak success for any given value of bt (ν). Translating back
to the dimensionless beetle density, a Poisson distributed beetle population will have a
mean of bt (ν) and corresponding variance equal to (β0AT )−1, and an overdispersed beetle
population will have variance exceeding (β0AT )−1.

Classical approaches to insect aggregation use a negative binomial random variable
for the number of overdispersed insects on a host (Hassell, 1978). While this approach
would be possible for mountain pine beetle, we adopt a more flexible approach, using
a continuous random variable Bt(ν) with probability density function g(b;bt (ν), θ) that
has mean bt (ν) and dispersion parameter θ .
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Equation (22) is interpreted as the equation for the expected density of beetles, and is
rewritten as

bt+1(ν) = k̃(ν)
(
∫ 1

0 φt (ν)
∫ ∞

0 g(b;bt (ν), θ)χ(b, ν)bAe−γ b db dν)
∫ 1

0 k̃(ν)φt (ν)(1 − ∫ ∞
0 g(b;bt (ν), θ)χ(b, ν) db)dν

, (41)

As the threshold function χ becomes steep (α → ∞) is it

bt+1(ν) = k̃(ν)
(
∫ 1

0 φt (ν)
∫ ∞

exp(β1ν)
g(b;bt (ν), θ)bAe−γ b db dν)

∫ 1
0 k̃(ν)φt (ν)G(exp(β1ν);bt (ν), θ) dν

, (42)

where G(b;bt (ν), θ) is the cumulative density function for b. The corresponding equation
for the distribution of bark area of live hosts as a function of host vigor (17) becomes

φt+1(ν) = φt (ν)G
(
exp(β1ν);bt (ν), θ

)
. (43)

One possible form for g(b;bt (ν), θ), consistent with observations of beetle densities
of zero in uninfested trees and approximately 60 m−2 in infested trees, would be bimodal,
with peaks at b = 0 and b = bm ≈ 3 (in nondimensional variables). While this appears to
be a fruitful avenue for development, we leave it for future research.

In some cases, the integrands in Eq. (42) can be simplified. For example, if the proba-
bility density function g is chosen as the gamma distribution with mean bt (ν) and variance
b2

t (ν)/θ

g(b;bt (ν), θ) = bθ−1e−θb/bt (ν)

	(θ)(bt (ν)/θ)θ
, (44)

with corresponding cumulative density function

Pr(Bt < b) = G(b;bt (ν), θ) = 1 − 	(θ, bθ/bt (ν))

	(θ)
, (45)

where 	(·) is the gamma function and 	(·, ·) is the incomplete gamma function (Fig. 8),
then in the limit θ → ∞, g(b; θ, bt ) → δ(b−bt ) and G(b; θ, bt ) → H(b−bt ) and model
(22) is regained (Fig. 8). Using the cumulative density function (45), the numerator of
(42) can be rewritten as

A

∫ 1

0
φt (ν)h

(
bt (ν)

)
dν (46)

where

h
(
bt (ν)

) = bt (ν)

(
θ

θ + γ bt (ν)

)θ+1(
1 − G

(
eβ1ν,

(θ + 1)bt (ν)

θ + γ bt (ν)
, θ + 1

))
. (47)

The variance of the gamma distribution is given as b2
t /θ and hence the population

is overdispersed when b2
t /θ > (β0AT )−1, or equivalently θ < b2

t (ν)β0AT . For a beetle
population near attack threshold density bt (ν) ≈ 1, and the inequality for an overdispersed
population is given approximately by θ < β0AT ≈ 281 (Table 2).
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Fig. 8 The gamma function can be used to describe beetle aggregation. The probability density function
(44) (top panel) and cumulative density function (45) (bottom panel) for a gamma distribution of beetles
are shown for mean beetle density bt (ν) = 1. Dispersion parameters are θ = 1 (exponential, long dashed),
θ = 10 (dashed) and θ = 281 (solid). Lower θ levels indicate higher aggregation levels. At θ → ∞ the
beetle density is given by its mean, and the model becomes deterministic. The dots indicate the Poisson
distribution rescaled to correspond with the θ = 281 case. This is approximated closely by the solid line
arising from the gamma distribution. To observe the effect of aggregation, observe that for β1 = 2.1 and
ν = 0.25 the threshold for successful attack, exp(β1ν) = 1.86 is exceeded by about 15% of the beetles
with dispersion parameter θ = 1, but almost none of beetles with larger θ .

Figure 8 shows the gamma distribution for various θ values, and demonstrates that
this distribution (solid line) also closely approximates the nonaggregating Poisson model
(dots) for the appropriate value of θ (θ = 281). For this value of θ, the probability density
function approaches a delta function and the cumulative density function approaches a
step function, indicating that the behavior of this nonaggregating model will be close to
that of the deterministic model (22).
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The gamma distribution allows for the possibility that, even under heavy beetle attack,
the most common observation (mode) would be trees with no attacks (Fig. 8, long-dashed
line). This arises in the limit θ → 1 as (44) becomes an exponential distribution g. The
lower panel of Fig. 8 illustrates how, when the average beetle density lies below that
threshold level for attack success, higher levels of aggregation (lower θ ) mean that a
larger fraction of attacks are successful.

Even with the simplification of a gamma distribution for g, Eqs. (42)–(43) must be
solved numerically using quadrature. The numerical solution of these equations, for vary-
ing values of beetle aggregation (θ ), is shown in Fig. 9. The θ values for beetle aggregation
are as illustrated in Fig. 8. The top row of Fig. 9 shows no aggregation (θ = 281), while
the second and third rows of the figure show increasing levels of aggregation (θ = 10
and θ = 1, respectively). (The corresponding probability density and cumulative density
functions for the aggregation functions are shown in Fig. 8.) All other parameters in the
model are chosen to be identical to the top panels of Fig. 5 (left column) and Fig. 6 (right
column). Note that the top panel of the left column of Fig. 9 (stochastic model with linear
dynamics and no aggregation) is similar to the top panel of Fig. 5 (deterministic model
with linear dynamics and no aggregation), and that the top panel of Fig. 9 (stochastic
model with nonlinear dynamics and no aggregation) is similar to the top panel of Fig. 6
(deterministic model with nonlinear dynamics and no aggregation).

As with the previous figures, the black dashed, solid white, and white dashed lines
show threshold beetle abundances, as calculated for the deterministic models. They are
simply reproduced in this figure for reference. Lines in the left column are identical to
those in the top panel of Fig. 5. The black dashed line indicates the minimum beetle abun-
dance required to kill the weakest hosts in the deterministic model with no aggregation;
the solid white line indicates the minimum beetle abundance guaranteed to eventually kill
the entire stand in the deterministic model with no aggregation; and white dashed line in-
dicates the minimum beetle abundance guaranteed to kill the stand in a single year in the
deterministic model with no aggregation. In a similar manner, lines in the right column
are identical to those in the top panel of Fig. 6.

Note that the grey area in each panel increases with increasing aggregation. This can
be seen as one moves from the top row to the bottom row in either column. This means
that increased aggregation makes it more likely that a stand will be successfully attacked
(white areas are replaced by grey), but also makes it more likely that a fraction of the
stand will escape being killed (black areas are replaced by grey). We interpret this result
as follows: at low beetle abundance, aggregation helps ensure that the attack threshold
is exceeded in some trees, and hence that some individuals in a stand become infected.
However, at high abundance, aggregation means that certain trees fall below the attack
threshold as the beetles move to other trees, and hence the entire stand is not infected at
levels above threshold.

5. Discussion

Previous productivity curve models have modeled beetle production in an entire stand.
This does not easily account for the changing vigor structure as the beetle infestation pro-
gressed. In this paper, we have modeled and analyzed a vigor-structured model for beetle
dynamics within a stand. This model explicitly tracks the changing vigor structure in the
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Fig. 9 Forest damage as a function of initial beetle density predicted by the stochastic threshold model.
Dynamics parameters in the left column are α = 2, γ = 0.8 and β = 0, and dynamics parameters in the
right column are α = 33, γ = 0.8 and β = 2.1. Aggregation parameters are θ = 281 in the first row, and
θ = 10 and 1 in the second and third rows. Note the grey area in each panel increases with increasing
aggregation, as one moves from the top row to the bottom row.

stand. All model parameters, other than vigor preference c and dispersal survival S, were
determined by fitting model components to empirical data (Table 2). The closest existing
model to the one developed here is the computer simulation model of Raffa and Berry-
man (1986). However, that model did not provide an explicit mathematical formulation,
such as the one given here. We hope that our explicit mathematical formulation provides
a foundation for basis further insight and analysis by other researchers.
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The added detail needed to track vigor structure has generated mathematical complex-
ity; the models (1)–(2), (7) and (13) are a system of nonstandard nonlinear integrodif-
ference equations. However, the assumption of an abrupt threshold response (α → ∞)
allowed for model simplification, given by reduction to a delayed discrete-time dynam-
ical system for beetle population levels. Analysis of this simplified model allowed for
predictions of model outcomes (fraction of stand killed by beetles) as a function of the
two unknown quantities: initial number of beetles introduced to the stand N0 (variable)
and vigor preference c (see Figs. 5 and 6).

Our assumption that beetles respond precisely to the low tree vigor is an simplification,
as they cue on a large number of chemical signals of which tree kairomones are just one.
In addition, the beetles may cue on larger tree size, which often corresponds with low
tree vigor. As mentioned in Section 2.2 our simplification can be considered a “best-case”
establishment scenario, where by choosing low-vigor trees, beetles can establish most
easily. In our example, we consider a vigor distribution that is initially uniform. Although
this is a useful starting point, it likely that the initial vigor distribution is structured, pos-
sibly with peaks at low and high vigor. It is intriguing to consider whether such structure
could give rise to meta-stable dynamics, where beetles slowly build up populations in
a small number low-vigor hosts before breaking out and attacking the high vigor hosts
(cf. Safranyik and Carroll, 2006).

A model extension to account for beetle aggregation used ideas from the models for
host-parasitoid dynamics with aggregating parasitoids (Hassell, 1978). This model allows
researchers to use empirically derived distributions of host selection and aggregation to
describe complex spatial processes. This stochastic formulation is quite general, but adds
an additional level of model complexity. One possible approach would be to choose the
bimodal aggregation function, described in Section 4, right after Eq. (43).

Although likely less realistic for mountain pine beetle than the bimodal distribution,
the gamma distribution provides a flexible, but relatively tractable distribution for aggre-
gating beetle numbers on the host trees. Using this, the effect of aggregation on outbreak
dynamics can be analyzed numerically, as shown in Fig. 9. Here, the numerical results
show that the effect of aggregation is to increase the likelihood of successful attack of a
stand, but to decrease the likelihood that the entire stand is killed. Further work is needed
to estimate the appropriate aggregation parameter for the mountain pine beetle.

The work of Nelson et al. (2008) asks why current risk models fail, concluding that
the primary reason is because beetle density has been removed as a hazard index in cur-
rent risk models. As shown graphically in Figs. 5, 6, and 9, our model has provided a
framework where beetle density is a key factor determining forest damage. Our model
has underscored the role of initial population levels N0, as well as selective preference
of beetles for low vigor classes c, and the nonlinear attack threshold β1 in determining
the attack success and, when successful, attack outcomes (entire forest killed versus a
fraction).

Our goal has been to develop a strategic model which can be used to relate risk of forest
damage to known quantities. There are additional processes, not included in our model,
that govern dynamics in natural stands. These include competition with other bark bee-
tles (Safranyik and Carroll, 2006), variable redistribution survivorship S (Burnell, 1997),
evidence that host selection can change with beetle density (Wallin and Raffa, 2004) and
temperature-dependent beetle phenology (Bentz et al., 1991). While strategic models that
leave out too many ecological factors may be unable to predict risk may be unable to
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predict risk (Nelson et al., 2008), we believe that the next step is to validate the vigor-
structured model against mountain pine beetle infestation data. Based on the outcome of
this, it may be necessary to develop the model further. This will be the subject of further
work.
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Appendix A: Notes for converting axes in Fig. 1(b)

The axes used is the original manuscript by Mulock and Christiansen (1986) were
Y = A20

D
, where A is the number of successful attacks on the entire host and D is the

diameter at breast height of the tree, and X = B
S

, where B is the yearly increase in a tree’s
basal area, and S is the sapwood area. We seek to transform these data onto new axes of
Y ∗ = A∗, where A∗ is the number of attacks per meter square of bark area, and X∗ = M

L
,

where M is the yearly mass gain of the tree and L is the leaf area of the tree. To convert
each data point, we would need the height, sapwood area, and diameter of each tree. Since
this information is unavailable, we instead transform the data using the average value of
these quantities for the stand as follows: Y ∗ = Y100

20Hπ
, where H is the maximum height of

the attacks (Mulock and Christiansen, 1986). The factor of 100 converts the diameter in
meters to bark area in meters. Host vigor is converted as X∗ = XS∗H∗δ

100L∗ , where S∗ is the
average sapwood area in a stand, δ is the density of wood, H ∗ is the average tree diameter
in centimeters, and L∗ is the allometric relationship relating sapwood area to leaf area in
Norway Spruce (Stancioiu and O’Hara, 2006) (Table A.1).

Table A.1 Parameters for converting the axes in Fig. 1(b)

Parameter Estimate Description

H 18.5 m Maximum attack height
H∗ 1850 cm Maximum attack height
S∗ 25 cm Average sapwood area
δ .322 g cm−3 Wood density
L∗ 10 Relationship between sapwood area and leaf area
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Appendix B: Methods for estimating parameters

Parameter estimates were derived from two studies on mountain pine beetles. Beetle pa-
rameters were estimated from data in Raffa and Berryman (1983), and host parameters
were estimated from data in Waring and Pitman (1985).

B.1 Beetle parameters (A, γ )

Raffa and Berryman (1983) report observations of the number of pupae produced per
attack as a function of attack density. If we assume that the mortality from pupae to
adult is small, then these data provide the necessary information to estimate A and γ for
that particular stand, in the year that the study was undertaken. The data were digitized
and the parameters estimated by fitting the following nonlinear function p(b(a, ν), ν) =
A exp(−γ b(a, ν)). The minimization was done using the NLS library in the R statistical
environment.

B.2 Host parameters (α, β0, β1, νm)

Waring and Pitman (1985) present a data set of host mortality as a function of attacking
beetle density and host vigor for mountain pine beetles in a lodgepole pine stand. We
use this data to obtain estimates for α, β0, and β1. A small number of the data were for
‘strip-attacks’ where only a portion of the tree is killed. Since the extent of the damage is
not reported, and since they only represent a small proportion of the data set, we exclude
them from the analysis. The expected probability of host mortality (πi ) is given by πi =
(1 + exp(−α(yi − β0 exp(β1xi))))

−1 where xi is the vigor of host i, and yi is the density
of attacking beetles. Since the response variable is binary (host is either dead or alive),
the parameters were estimated by minimizing the log-likelihood objective function (L)
for binary data L = −∑n

i=1(zi log(
πi

1−πi
) + log(1 − πi)) where zi is the observed host

outcome (0 or 1). The minimization was done using the optim library in the R statistical
environment. To avoid numerical errors, the predicted probability of host mortality was
bound between 0.0001 and 0.999.

The maximum vigor (νm) was taken as the maximum vigor observed in the stand.
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